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Abstract. In this work, architecture for real stereo proggsss implemented
using a modified census transform based in a noralepixel census tech-
nique. The non central census technique allowsnapeaot architecture. Pro-
posed architecture is segmented in image reciificahodule to avoid lens dis-
tortion and to align epipolar lines, stereo protessnodule with modified cen-
sus transform and finally, a post processing modiith a propagation algo-
rithm to correct false disparity values. Proposethiéecture uses low hardware
resources and memory requirement in a way thatt&paow Cost FPGA can
be used for implementation. Additionally, a cortiela tracking module is in-
corporated to one camera with neglected hardwatic@omparison with oth-
er architectures for security applications.
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1 I ntroduction

Stereo vision, compared with other range sensark a8 laser scanner or time-of-
flight, is a technology that can deliver the suffit description of the surrounding
environment. It is purely passive technology angstbffers low cost and has poten-
tial uses in many visual domains such as autonomauigjation in which accurate 3D
information about the road is crucial, object 3@amstruction, object segmentation,
and surveillance systems [10]. However, calculatbthree dimensional depth maps
on signal processors that meets these requiren@nesry time consuming. In this
way, real-time dense stereo is difficult to be agbd with general purpose processors
even CUDA. For real-time requirements of most aggtions, the specific algorithms
were often implemented using dedicated hardwareitaagossible because of many
stereo vision algorithms do not enforce a purelyusatial implementation and are
therefore apply to parallelized solutions. Additdly, stereo applications are used
for security applications or video games in patalleh a tracking algorithm or sys-
tem. For this reason, a tracking architecture @gied using the correlation structure
from the stereo module.
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In the last few years, the GPUs have become materame popular. Using GPUs
for stereo acceleration can directly be a solutiwrPC-oriented applications. But, the
high power consumption limits their application®GAs have already shown their
high performance capacity for image processingstaskparallel especially for em-
bedded systems. In this paper, it is simulated sndhesized a stereo vision core
algorithm implemented in VHDL for the Spartan XC880 from XILINX, an FPGA
that is suitable for this kind of application. Takgorithm is based on a Census trans-
form modified algorithm with produces a small haadesimplementation. It is small
enough to enable the pre- and post-processingeointages on the same FPGA, but
with a maximum disparity of 50 pixels all in reahe for a compact system.

2 Background

The task of a stereo vision algorithm is to analymeimages taken by a pair of cam-
eras and to extract the displacement of the objadieth images. This displacement
is counted in pixels and called disparity. All thetisparities form the disparity map,
which is the output of a stereo vision algorithnd @mables the calculation of distanc-
es to objects using triangulation.

Detecting conjugate objects in stereo images taioldense disparity maps is a
challenging research problem known as the correfgure problem, i.e. to find for
each point in the left image, the correspondingnpivi the right one. To determine a
conjugate pair, it is necessary to measure thdagityi of the points. The point to be
matched should be distinctly different from itsreunding pixels. In order to mini-
mize the number of false correspondences and tdyntinish time processing in the
image pair, several constraints have been impddesluniqueness constraint requires
that a given pixel from one image cannot corresptonchore than one pixel on the
other image. In the presence of occluded regiotisimthe scene, it may be impossi-
ble at all to find a corresponding point. The ondigrconstraint [6] requires that if a
pixel is located to the left of another pixel indage, i.e. left image, the corresponding
pixels in right image must be ordered in the saraemer, and vice versa, i.e. ordering
of pixels is preserved across the images. The imgleonstraint may be violated if an
object in the scene is located much closer to #meca than the background, and one
pixel corresponds to a point on the object whike dlther pixel corresponds to a point
in the background. Finally, the continuity consttdi4], which is valid only for sce-
narios in which smooth surfaces are reconstruategijires that the disparity map
should vary smoothly almost everywhere in the imades constraint may be violat-
ed at depth discontinuities in the scene.

According to a recent taxonomy [17], stereo aldgwnis that generate dense depth
measurements can be divided into two classes, Ilghoimh local algorithms. Global
algorithms, e.g. [14], rely on iterative schemest ttarry out disparity assignments on
the basis of the minimization of a global cost timw. These algorithms yield accu-
rate and dense disparity measurements but exhilgityahigh computational cost that
renders them unsuited to real-time applicationsalalgorithms [6, 8, 13] can be
based in different concepts to establish a cormdpace between images, so it is
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possible to find area-based and feature based.-l#ased stereo algorithms are ap-
proaches that propose a dense solution for caiegldtigh-density disparity maps.
Additionally, these approaches have a regular dhgaoic structure which is suitable
for convenient hardware architecture. A simple rodthwvould be to calculate the
absolute difference between two pixels; this mettsodxtremely cheap but not ro-
bust. The second possible method seeks to imprpee the previous one by consid-
ering a small window around the pixels in the Baft right image and then using the
sum of the differences. Small windows give supgortentral pixel to avoid false
matching during the stereo process. In this paper,used a modified Census trans-
form to achieve a stereo correlation. Modified esngransform uses a non central
pixel reference, i.e., it uses the most right pirethe central row from a given win-
dow. This change just affects the generated cevesttor but results and advantages
are same like other census implementations. Cefmaosform is a non-parametric
measure used during the matching process for magssimilarities and obtaining
the correspondence between the points into thateftright images. Advantages with
census transform are: a windows support, toleramdédumination changes and pos-
sibility to hardware parallel implementation. Ore thther hand, feature-based algo-
rithms rely on certain points of interest. Thesenfsoare selected according to appro-
priate feature detectors. The major limitation bffeature-based techniques is that
they cannot generate dense disparity maps, and:hbeg often need to be used in
conjunction with other techniques. Because of f@rse and irregularly distributed
nature of the features, the matching results shbaldugmented by an interpolation
step if a dense disparity map of the scene is egsikdditionally, an extra stage for
extensive feature detection in the two images &laed, which will increase the com-
putational cost. Thus feature-based methods aresuitable for real-time applica-
tions.

3 Hardwar e implementation

Stereo hardware implementation can be segmenteexagigure indicates
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Fig. 1. Stereo diagram block. Camera module is an intesaitestereo camera board. Module
rectification uses a predefined algorithm for imagerdinate transformation. After that, census
module obtain a census vector for stereo matchidgfiaally, postprocessing and subpixel

calculus is achieved.

Hardware modules in figure 1 show stages for rieatibn, modified census trans-
form and census matching. Additional hardware sdu® check the uniqueness re-
striction and sub pixel estimation.

3.1 Rectification process

Rectification involves lens distortion correctialignment rows in stereo images,
back or reverse projection, and bilinear interpofatin first place, due to manufac-
turing errors there will always appear distortimasised by the lens and a misalign-
ment between lens and camera chip. These distertiappen before the light ray hits
the image chip and consequently affect coordindtesrder to obtain a pair of recti-
fied images from the original images after progagdens distortion and to align
scanlines a homography is applied. In the equdtidrix, y) and (X', y') are coordi-
nates of a pixel in the original images and thdified images, respectively.
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To avoid problems such as reference or coordinapdichtion, reverse mapping is
used with interpolation. Once the image pair igified, 1-D searching with the cor-
responding line is sufficient to evaluate the digga

A common hardware implementation of the rectifimatprocess is through Look-
Up Tables. Only at the start, an offline calibratiosing MatLab is done and from
calibration stage two LUTs -one for each camerasults [1]. Generated data in-
cludes: new pixel positions and best pixels foeifipolation (Figure 2). Although,
using LUTs directly in FPGA is possible, it is mandtable to have the LUT in exter-
nal memory to extent capacity for future architeatexpansions.

In hardware, rectification is applied as in[P1jwith some important differences:
in proposed architecture new pixels positions aevipusly computed and a defined
neighborhood (from calibration stage) is used terpolate absent pixels. In this way,
it is no necessary to process coordinates usingnzography in the architecture. Fi-
nally, rectification module is shown in figure 2.
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Fig. 2. Rectification module, a)Hw for the interpolatioml, it detects absent pixels with
coordinates from LUTs , b)Bilineal Interpolation nubel uses neighborhood for establish pixels
values in real time.

In figure 2a, new pixel coordinates generates bfzgkls in the rectified image, so
these black pixels are filled with interpolated gd& from specified neighborhood
obtained in the calibration process. Architectgrbased in row buffers to avoid store
images. In figure 2b, a module for bilinear intdgtimn is shown. In both cases 3x3
windows are used for explication purpose, realiggcture uses 11x11 windows.

3.2 StereoProcessing

Stereo matching is divided into two stages, thesasrtransform stage and the cor-
relation stage. In the census transform stagdethand right images are transformed
into images with census vector pixel values instgay-level intensity. This trans-
form is a non-parametric measure for window basemtgssing used during the
matching process for measuring similarities andaiolitg the correspondence be-
tween the points into the left and right imagesalalassic hardware implementation
for census transform, pixel neighborhood associatitidl central pixel needed to be
accessed simultaneously to calculate in a singi&im census vector. Last technique
increases HW requirement with consequent frequelecyement and complexity [2].
However, in the presented architecture, a modi&sus transform is used. Proposed
modification just takes, instead central pixeldensus, first right pixel in central row.
In test changes with proposed modification were apyreciable. With this in mind,
necessary hardware to calculate census transfocreak® significantly. But pixels in
the same column need to be present at same timachieve this, architecture uses a
scan-line buffer and windows buffer. Scan-line buffs memory which is able to
contain a row from input image in order to synclzendata and avoid additional
access to external memory and a window buffer, wigca set of shift registers with
the pixels belong to the window. Such windows usffi@ other architectures [5][15]
consists of 8 bit registers, but in this case tegiscontains only one bit. The scan-line
buffer used in the proposed system consists of Udl-gort memories, and each
memory can store one scan-line of an input imagsufing that the coordinates of
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the current input pixel arg, y)and the intensity value of the pixell{g, y), the con-
nections between the memory are shown in Fig. 3.
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Fig. 3. 3x3 Architecture example. Implemented architectsirelx11. Blocks in dark gray are 1
bit registers. In this case, after 3 latency clockgisters contains a valid census transform.
There are in the architecture two modules onedochehannel.

Figure 3 shows a scan-line buffer converting alsingw pixel input into a column
pixel vector output. A window buffer is a set obit shift registers, but central line
can store one 8 bit pixel from input image. Oneédisters with comparison modules
store values and delay results until all columngehHaeen processing. Intensity values
in central row register are shifted from left tghi at each pulse clock to build the
census transform. In comparison, with the clasgeahnique where all 11x11 pixel
registers are implemented, it is obtained a windbuffer with 121x8=968 bits, but
in proposed architecture just 21 registers (11 defumn register + 10 central row
registers) x8+10x10=261 bits are necessary to imgité census transform.
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Fig. 4. Correlation module uses Hamming distance to astabimilarity. Here is shown a 3x3
windows module with a 3 level disparity as examplmposed architecture uses 50 disparity
levels.

Correlation stage evaluates the correlation betwieecensus vectors generated by
the left and right census transform. Stereo pro@edu the correlation stage ibt
hamming distances are evaluated using a templatdowi for a pixel in the left im-
age and the correspondihgcorrelation windows for pixels in the right imagéter
the comparison, the two pairs with the shortestrarg distances are used to define
the resulting disparity. Since the windows beingnpared can be regarded as bit
vectors, it is possible to obtain the hamming distaby counting ‘1’ in the vector
after applying an XOR operation [5]. Here, proposechitecture introduces another
hardware artifice to decrease hardware: proposghtacture uses pipeline from fig-



Real Time Stereo Vision with a modified Census transform and fast tracking in FPGA

ure 3 to calculate Hamming distance from left aigthtrimages without using a sum
combinatorial tree (figure 4).

In order to decide upon the disparity result, gmmplate window in the left image
is compared with aIN candidate windows from the right image. First, tensus
vector from the census transform module is deldged pixel clocks. Next, the dis-
tance between any two census vectors is calcul@manament selection method is
used to find the shortest distance among theBamming distances and winner takes
all. The candidate window, which has the shortetadce from the template window,
is selected as the closest match, and the cooeditif¢rence of the selected windows
along with the x-axis is extracted as the dispaetult. In proposed system there are
not sum combinational trees but RTL structures tvtdat combinational paths and
increase frequency. Most left blocks are onedgjtsters en figure 3.

3.3  Tracking module

Tracking objects by correlation is a basic techaidu tracking systems. In this
case, add a tracking module in a real time arcthitecwhich does correlations with
windows it is not a problem, although this trackmgdule just is added to one cam-
era because of hardware circuitry complexity. Fégbishows the tracking module
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Fig. 5. 3x3 module for object tracking.

From figure 5, module is exactly same that oensodule except for some de-
tails: additional flip flop in the output from shifegisters, XOR gates to evaluate
hamming distance and sum sequential tree. Output Bequential tree is input to a
coordinate module that gives to the architectummardinate range where objective
tracking is calculated.
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34 Post Processing

Post processing uses online subpixel disparigy, no winning disparity is
stored with near pixels to after calculate a sublpbstimation. Additionally, in order
to avoid false correspondences, classical lefttriieck is substituted by uniqueness
restriction. Briefly, assume that the left imageli®sen as reference and the disparity
candidates range build a disparity arf@y..., dnad - L(X,y) is one point of left image,
the algorithm searches for the best candidate Iynmzing, in this case, a matching
cost C. Suppose now the best match found.fgra+ d,. y) is R(X, y) with match-
ing costC(x-a+dnas X, Y) And another point of the left imadéx-b+d,,,y) has pre-
viously been matched witR(x, y)with costC(x-b+da, X, Y) And another point of
the left image.(x-b+d.,Y) has previously been matched wilix, y)with costC(x-
b+dmas X, Y) Based on the uniqueness constraint, we conchateat least one of the
two matches is incorrect and only the match withimum cost is retained. This im-
plies that the proposed approach allows for reéogerom previous errors as long as
better matches are found during the search. Duhegmplementation, it only needs
to set updax registers to keep track of the best match andesponding matching
cost for right image points in the range of intériide match newly created f&(x,y)
is compared with previous match, and the one blaced will be labeled “incorrect”.

4 Results

The proposed real-time stereo vision system isgdesi and coded using VHDL
and implemented using a Spart&a@8351000 FPGA from Xilinx.. The implemented
system interfaces two MT9M112 CMOS sensors fromrificas a stereo camera pair.
Table | summarizes the device utilization repomntsif the Xilinx synthesis tool in ISE
release 13i, Used FPGA resources for architecteréndicated in table 1:

Table 1. Device utilization summary

Used Available Utilization
Occupied Slices 7554 7680 98%
Rectification 2311 30%
Census transform 1034 13%
Hamming Distance 1566 20%
Correlation 1867 24%
Post processing 776 10%

Since the hardware was built for real-time proicegsf an incoming image, the
disparity results of the proposed design were gaadrthrough HDL functional simu-
lation, i. e., a test bench was generated to paotigtecture.

Table 2 compares different architectures with tteppsed in this paper.
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Table 2. Real time performance of reported stereo visiotesys based on FPGA

Implemented Image Size Matching Disparity Fps
system method
MSVM-III 640x480 Census 64 30
Kunh et al. 256x192 Ssd/census 25 50
Proposed
640x480 Census 50 52

Architecture

Table 2 shows some systems found in literathee proposed architecture is
based in a cheap FPGA and it is comparable withesignd elaborate systems. Pro-
posed architecture uses less hardware and is mivabls for mobile applications like
robotic platforms. DeepSea founded in the litematisra multi board platform so it
can be used for comparison.

Finally, Fig. 4 is the resultant disparity imagerfr test images captured in differ-
ent environments. The images were processed aradnedtfrom the implemented
system at different post-processing levels.

Fig. 6. Test stereo images and disparity maps from thegsexd architecture
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5 Conclusions

In this article, we have proposed a high perforrmaRPGA-based stereo vision
system with minimum cost using modified censusgfamm, which can provide dense
disparity information with additional sub-pixel agacy in real time. The proposed
system was implemented within a single FPGA incigdall the pre and post-
processing functions such as rectification and werngss test. To achieve the targeted
performance and flexibility, architecture was foedion the intensive use of pipelin-
ing and modularization. The proposed system canské for higher level vision ap-
plications such as intelligent robots, surveilla)a@utomotives, and navigation. Addi-
tional application areas in which the proposedestaiision system can be used will
continue to be evaluated and explored.
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